Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 450
Filtrar
1.
Cells ; 13(7)2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38607066

RESUMO

The strategy for treating bladder cancer (BC) depends on whether there is muscle invasion or not, with the latter mostly treated with intravesical therapy, such as with bacillus Calmette-Guérin (BCG). However, BCG treatment is unsuccessful in 70% of patients, who are then subjected to radical cystectomy. Although immune-checkpoint inhibitors have been approved as a second-line therapy for a subset of BC patients, these have failed to meet primary endpoints in clinical trials. Thus, it is crucial to find a new treatment. The mitochondrial gatekeeper protein, the voltage-dependent anion channel 1 (VDAC1), mediates metabolic crosstalk between the mitochondria and cytosol and is involved in apoptosis. It is overexpressed in many cancer types, as shown here for BC, pointing to its significance in high-energy-demanding cancer cells. The BC cell lines UM-UC3 and HTB-5 express high VDAC1 levels compared to other cancer cell lines. VDAC1 silencing in these cells using siRNA that recognizes both human and mouse VDAC1 (si-m/hVDAC1-B) reduces cell viability, mitochondria membrane potential, and cellular ATP levels. Here, we used two BC mouse models: subcutaneous UM-UC3 cells and chemically induced BC using the carcinogen N-Butyl-N-(4-hydroxybutyl) nitrosamine (BBN). Subcutaneous UM-UC3-derived tumors treated with si-m/hVDAC1 showed inhibited tumor growth and reprogrammed metabolism, as reflected in the reduced expression of metabolism-related proteins, including Glut1, hexokinase, citrate synthase, complex-IV, and ATP synthase, suggesting reduced metabolic activity. Furthermore, si-m/hVDAC1-B reduced the expression levels of cancer-stem-cell-related proteins (cytokeratin-14, ALDH1a), modifying the tumor microenvironment, including decreased angiogenesis, extracellular matrix, tumor-associated macrophages, and inhibited epithelial-mesenchymal transition. The BBN-induced BC mouse model showed a clear carcinoma, with damaged bladder morphology and muscle-invasive tumors. Treatment with si-m/hVDAC1-B encapsulated in PLGA-PEI nanoparticles that were administered intravesically directly to the bladder showed a decreased tumor area and less bladder morphology destruction and muscle invasion. Overall, the obtained results point to the potential of si-m/hVDAC1-B as a possible therapeutic tool for treating bladder cancer.


Assuntos
Neoplasias da Bexiga Urinária , Canal de Ânion 1 Dependente de Voltagem , Humanos , Animais , Camundongos , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Vacina BCG , Mitocôndrias/metabolismo , Neoplasias da Bexiga Urinária/patologia , Trifosfato de Adenosina/metabolismo , Microambiente Tumoral
2.
Int J Med Sci ; 21(4): 755-764, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38464835

RESUMO

Alcoholic liver disease (ALD) poses a substantial global health challenge, with its pathogenesis deeply rooted in mitochondrial dysfunction. Our study explores the pivotal roles of Phosphoglycerate mutase family member 5 (Pgam5) and Voltage-Dependent Anion Channel 1 (VDAC1) in the progression of ALD, providing novel insights into their interplay and impact on mitochondrial integrity. We demonstrate that Pgam5 silencing preserves hepatocyte viability and attenuates ethanol-induced apoptosis, underscoring its detrimental role in exacerbating hepatocyte dysfunction. Pgam5's influence extends to the regulation of VDAC1 oligomerization, a key process in mitochondrial permeability transition pore (mPTP) opening, mitochondrial swelling, and apoptosis initiation. Notably, the inhibition of VDAC1 oligomerization through Pgam5 silencing or pharmacological intervention (VBIT-12) significantly preserves mitochondrial function, evident in the maintenance of mitochondrial membrane potential and reduced reactive oxygen species (ROS) production. In vivo experiments using hepatocyte-specific Pgam5 knockout (Pgam5hKO) and control mice reveal that Pgam5 deficiency mitigates ethanol-induced liver histopathology, inflammation, lipid peroxidation, and metabolic disorder, further supporting its role in ALD progression. Our findings highlight the critical involvement of Pgam5 and VDAC1 in mitochondrial dysfunction in ALD, suggesting potential therapeutic targets. While promising, these findings necessitate further research, including human studies, to validate their clinical applicability and explore broader implications in liver diseases. Overall, our study provides a significant advancement in understanding ALD pathophysiology, paving the way for novel therapeutic strategies targeting mitochondrial pathways in ALD.


Assuntos
Hepatopatias Alcoólicas , Doenças Mitocondriais , Animais , Humanos , Camundongos , Etanol/toxicidade , Etanol/metabolismo , Hepatopatias Alcoólicas/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , Fosfoglicerato Mutase/genética , Fosfoglicerato Mutase/metabolismo , Canal de Ânion 1 Dependente de Voltagem/genética , Canal de Ânion 1 Dependente de Voltagem/metabolismo
3.
Int J Mol Sci ; 25(5)2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38474278

RESUMO

The small GTPase RAS acts as a plasma membrane-anchored intracellular neurotrophin counteracting neuronal degeneration in the brain, but the underlying molecular mechanisms are largely unknown. In transgenic mice expressing constitutively activated V12-Ha-RAS selectively in neurons, proteome analysis uncovered a 70% decrease in voltage-dependent anion channel-1 (VDAC-1) in the cortex and hippocampus. We observed a corresponding reduction in the levels of mRNA splicing variant coding for plasma membrane-targeted VDAC-1 (pl-VDAC-1) while mRNA levels for mitochondrial membrane VDAC-1 (mt-VDAC-1) remained constant. In primary cortical neurons derived from V12-Ha-RAS animals, a decrease in pl-VDAC-1 mRNA levels was observed, accompanied by a concomitant reduction in the ferricyanide reductase activity associated with VDAC-1 protein. Application of MEK inhibitor U0126 to transgenic cortical neurons reconstituted pl-VDAC-1 mRNA to reach wild-type levels. Excitotoxic glutamate-induced cell death was strongly attenuated in transgenic V12-Ha-RAS overexpressing cortical cultures. Consistently, a neuroprotective effect could also be achieved in wild-type cortical cultures by the extracellular application of channel-blocking antibody targeting the N-terminus of VDAC-1. These results may encourage novel therapeutic approaches toward blocking pl-VDAC-1 by monoclonal antibody targeting for complementary treatments in transplantation and neurodegenerative disease.


Assuntos
Doenças Neurodegenerativas , Canais de Ânion Dependentes de Voltagem , Camundongos , Animais , Canais de Ânion Dependentes de Voltagem/metabolismo , Neuroproteção , Doenças Neurodegenerativas/metabolismo , Proteínas ras/metabolismo , Regulação para Baixo , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Membrana Celular/metabolismo , Camundongos Transgênicos , RNA Mensageiro/metabolismo , Canal de Ânion 2 Dependente de Voltagem/metabolismo
4.
Ecotoxicol Environ Saf ; 274: 116218, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38492481

RESUMO

Cyfluthrin (Cy) is a widely used pyrethroid insecticide. There is growing evidence that Cy can cause damage to the nervous, reproductive, and immune systems, but there is limited evidence on the potential effects of maternal Cy exposure on offspring. A model of maternal Cy exposure was used to assess its neurobehavioral effects on young-adult offspring. We found that gestational Cy exposure affected pregnancy outcomes and fetal development, and that offspring showed impairments in anxiety as well as learning and memory, accompanied by impairments in hippocampal synaptic ultrastructure and synaptic plasticity. In addition, the IP3R-GRP75-VDAC1 apoptogenic pathway was also upregulated, and in vitro models showed that inhibition of this pathway alleviated neuronal apoptosis as well as synaptic plasticity damage. In conclusion, maternal Cy exposure during pregnancy can cause neurobehavioral abnormalities and synaptic damage in offspring, which may be related to neuronal apoptosis induced by activation of the IP3R-GRP75-VDAC1 pathway in the hippocampus of offspring. Our findings provide clues to understand the neurotoxicity mechanism of maternal Cy exposure to offspring during pregnancy.


Assuntos
Proteínas de Membrana , Nitrilas , Piretrinas , Feminino , Humanos , Gravidez , Hipocampo/metabolismo , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Membrana/efeitos dos fármacos , Proteínas de Membrana/metabolismo , Nitrilas/toxicidade , Piretrinas/toxicidade , Canal de Ânion 1 Dependente de Voltagem/efeitos dos fármacos , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Ratos , Receptores de Inositol 1,4,5-Trifosfato/efeitos dos fármacos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo
5.
Acta Biochim Biophys Sin (Shanghai) ; 56(2): 162-173, 2024 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-38298056

RESUMO

Voltage-dependent anion channel 1 (VDAC1) is a pore protein located in the outer mitochondrial membrane. Its channel gating mediates mitochondrial respiration and cell metabolism, and it has been identified as a critical modulator of mitochondria-mediated apoptosis. In many diseases characterized by mitochondrial dysfunction, such as cancer and neurodegenerative diseases, VDAC1 is considered a promising potential therapeutic target. However, there is limited research on the regulatory factors involved in VDAC1 protein expression in both normal and pathological states. In this study, we find that VDAC1 protein expression is up-regulated in various neuronal cell lines in response to intracellular metabolic and oxidative stress. We further demonstrate that VDAC1 expression is modulated by intracellular ATP level. Through the use of pharmacological agonists and inhibitors and small interfering RNA (siRNA), we reveal that the AMPK/PGC-1α signaling pathway is involved in regulating VDAC1 expression. Additionally, based on bioinformatics predictions and biochemical verification, we identify p53 as a potential transcription factor that regulates VDAC1 promoter activity during metabolic oxidative stress. Our findings suggest that VDAC1 expression is regulated by the AMPK/PGC-1α and p53 pathways, which contributes to the maintenance of stress adaptation and apoptotic homeostasis in neuronal cells.


Assuntos
Proteína Supressora de Tumor p53 , Canal de Ânion 1 Dependente de Voltagem , Canal de Ânion 1 Dependente de Voltagem/genética , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Estresse Oxidativo , Apoptose/genética , Trifosfato de Adenosina/metabolismo
6.
Gastroenterology ; 166(5): 826-841.e19, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38266738

RESUMO

BACKGROUND & AIMS: Incapacitated regulatory T cells (Tregs) contribute to immune-mediated diseases. Inflammatory Tregs are evident during human inflammatory bowel disease; however, mechanisms driving the development of these cells and their function are not well understood. Therefore, we investigated the role of cellular metabolism in Tregs relevant to gut homeostasis. METHODS: Using human Tregs, we performed mitochondrial ultrastructural studies via electron microscopy and confocal imaging, biochemical and protein analyses using proximity ligation assay, immunoblotting, mass cytometry and fluorescence-activated cell sorting, metabolomics, gene expression analysis, and real-time metabolic profiling utilizing the Seahorse XF analyzer. We used a Crohn's disease single-cell RNA sequencing dataset to infer the therapeutic relevance of targeting metabolic pathways in inflammatory Tregs. We examined the superior functionality of genetically modified Tregs in CD4+ T-cell-induced murine colitis models. RESULTS: Mitochondria-endoplasmic reticulum appositions, known to mediate pyruvate entry into mitochondria via voltage-dependent anion channel 1 (VDAC1), are abundant in Tregs. VDAC1 inhibition perturbed pyruvate metabolism, eliciting sensitization to other inflammatory signals reversible by membrane-permeable methyl pyruvate supplementation. Notably, interleukin (IL) 21 diminished mitochondria-endoplasmic reticulum appositions, resulting in enhanced enzymatic function of glycogen synthase kinase 3 ß, a putative negative regulator of VDAC1, and a hypermetabolic state that amplified Treg inflammatory response. Methyl pyruvate and glycogen synthase kinase 3 ß pharmacologic inhibitor (LY2090314) reversed IL21-induced metabolic rewiring and inflammatory state. Moreover, IL21-induced metabolic genes in Tregs in vitro were enriched in human Crohn's disease intestinal Tregs. Adoptively transferred Il21r-/- Tregs efficiently rescued murine colitis in contrast to wild-type Tregs. CONCLUSIONS: IL21 triggers metabolic dysfunction associated with Treg inflammatory response. Inhibiting IL21-induced metabolism in Tregs may mitigate CD4+ T-cell-driven chronic intestinal inflammation.


Assuntos
Mitocôndrias , Linfócitos T Reguladores , Animais , Humanos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/imunologia , Mitocôndrias/patologia , Modelos Animais de Doenças , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Canal de Ânion 1 Dependente de Voltagem/genética , Colite/imunologia , Colite/metabolismo , Colite/patologia , Interleucinas/metabolismo , Interleucinas/genética , Doença de Crohn/imunologia , Doença de Crohn/metabolismo , Doença de Crohn/patologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Camundongos Endogâmicos C57BL , Doença Crônica
7.
Arch Biochem Biophys ; 751: 109835, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38000492

RESUMO

The overexpression of voltage dependent anion channels (VDACs), particularly VDAC1, in cancer cells compared to normal cells, plays a crucial role in cancer cell metabolism, apoptosis regulation, and energy homeostasis. In this study, we used molecular dynamics (MD) simulations to investigate the effect of a low level of VDAC1 oxidation (induced e.g., by cold atmospheric plasma (CAP)) on the pyruvate (Pyr) uptake by VDAC1. Inhibiting Pyr uptake through VDAC1 can suppress cancer cell proliferation. Our primary target was to study the translocation of Pyr across the native and oxidized forms of hVDAC1, the human VDAC1. Specifically, we employed MD simulations to analyze the hVDAC1 structure by modifying certain cysteine residues to cysteic acids and methionine residues to methionine sulfoxides, which allowed us to investigate the effect of oxidation. Our results showed that the free energy barrier for Pyr translocation through the native and oxidized channel was approximately 4.3 ± 0.7 kJ mol-1 and 10.8 ± 1.8 kJ mol-1, respectively. An increase in barrier results in a decrease in rate of Pyr permeation through the oxidized channel. Thus, our results indicate that low levels of CAP oxidation reduce Pyr translocation, resulting in decreased cancer cell proliferation. Therefore, low levels of oxidation are likely sufficient to treat cancer cells given the inhibition of Pyr uptake.


Assuntos
Neoplasias , Ácido Pirúvico , Humanos , Canal de Ânion 1 Dependente de Voltagem/química , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Apoptose , Cisteína/química , Oxirredução , Metionina/metabolismo
8.
Exp Cell Res ; 434(2): 113874, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38070860

RESUMO

The voltage-dependent anion channel 1 (VDAC1) forms an oligomeric structure on the mitochondrial outer membrane, which plays critical roles in many physiological processes. Research studies have demonstrated that the knockout of VDAC1 increases pigment content and up-regulates the expression of melanogenic genes. Due to its involvement in various physiological processes, the depletion of VDAC1 has significant detrimental effects on cellular functions and the inhibition of VDAC1 oligomerization has recently emerged as a promising strategy for the treatment of several diseases. In this study, we found that VDAC1 oligomerization inhibitors, VBIT-12 and NSC-15364, promote melanogenesis, dendrite formation and melanosome transport in human epidermal melanocytes (HEMCs). Mechanistically, treatment of HEMCs with an oligomerization inhibitor increased the level of cytoplasmic calcium ions, which activated calcium-calmodulin dependent protein kinase (CaMK) and led to the phosphorylation of CREB and the nuclear translocation of CREB-regulated transcription coactivators (CRTCs). Subsequently, CRTCs, p-CREB and CREB-binding protein (CBP) in the nucleus cooperatively recruit the transcription machinery to initiate the transcription of MITF thus promoting pigmentation. Importantly, our study also demonstrates that VDAC1 oligomerization inhibitors increase pigmentation in zebrafish and in human skin explants, highlighting their potential as a therapeutic strategy for skin pigmentation disorders.


Assuntos
Transtornos da Pigmentação , Animais , Humanos , Transtornos da Pigmentação/metabolismo , Canal de Ânion 1 Dependente de Voltagem/genética , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Cálcio/metabolismo , Peixe-Zebra/metabolismo , Melanócitos , Melaninas/metabolismo , Pigmentação , Fator de Transcrição Associado à Microftalmia/genética , Fator de Transcrição Associado à Microftalmia/metabolismo , Fator de Transcrição Associado à Microftalmia/farmacologia
9.
Nat Commun ; 14(1): 8115, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38065946

RESUMO

Mitochondria are double-membrane-bounded organelles that depend critically on phospholipids supplied by the endoplasmic reticulum. These lipids must cross the outer membrane to support mitochondrial function, but how they do this is unclear. We identify the Voltage Dependent Anion Channel (VDAC), an abundant outer membrane protein, as a scramblase-type lipid transporter that catalyzes lipid entry. On reconstitution into membrane vesicles, dimers of human VDAC1 and VDAC2 catalyze rapid transbilayer translocation of phospholipids by a mechanism that is unrelated to their channel activity. Coarse-grained molecular dynamics simulations of VDAC1 reveal that lipid scrambling occurs at a specific dimer interface where polar residues induce large water defects and bilayer thinning. The rate of phospholipid import into yeast mitochondria is an order of magnitude lower in the absence of VDAC homologs, indicating that VDACs provide the main pathway for lipid entry. Thus, VDAC isoforms, members of a superfamily of beta barrel proteins, moonlight as a class of phospholipid scramblases - distinct from alpha-helical scramblase proteins - that act to import lipids into mitochondria.


Assuntos
Fosfolipídeos , Canal de Ânion 1 Dependente de Voltagem , Humanos , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Fosfolipídeos/metabolismo , Canais de Ânion Dependentes de Voltagem/metabolismo , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/metabolismo
10.
Redox Biol ; 67: 102907, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37797372

RESUMO

Cardiac fibrosis is characterized by the excessive deposition of extracellular matrix in the myocardium with cardiac fibroblast activation, leading to chronic cardiac remodeling and dysfunction. However, little is known about metabolic alterations in fibroblasts during cardiac fibrosis, and there is a lack of pharmaceutical treatments that target metabolic dysregulation. Here, we provided evidence that fatty acid ß-oxidation (FAO) dysregulation contributes to fibroblast activation and cardiac fibrosis. With transcriptome, metabolome, and functional assays, we demonstrated that FAO was downregulated during fibroblast activation and cardiac fibrosis, and that perturbation of FAO reversely affected the fibroblast-to-myofibroblast transition. The decrease in FAO may be attributed to reduced long-chain fatty acid (LCFA) uptake. Voltage-dependent anion channel 1 (VDAC1), the main gatekeeper of the outer mitochondrial membrane (OMM), serves as the transporter of LCFA into the mitochondria for further utilization and has been shown to be decreased in myofibroblasts. In vitro, the addition of exogenous VDAC1 was shown to ameliorate cardiac fibroblast activation initiated by transforming growth factor beta 1 (TGF-ß1) stimuli, and silencing of VDAC1 displayed the opposite effect. A mechanistic study revealed that VDAC1 exerts a protective effect by regulating LCFA uptake into the mitochondria, which is impaired by an inhibitor of carnitine palmitoyltransferase 1A. In vivo, AAV9-mediated overexpression of VDAC1 in myofibroblasts significantly alleviated transverse aortic constriction (TAC)-induced cardiac fibrosis and rescued cardiac function in mice. Finally, we treated mice with the VDAC1-derived R-Tf-D-LP4 peptide, and the results showed that R-Tf-D-LP4 prevented TAC-induced cardiac fibrosis and dysfunction in mice. In conclusion, this study provides evidence that VDAC1 maintains FAO metabolism in cardiac fibroblasts to repress fibroblast activation and cardiac fibrosis and suggests that the VDAC1 peptide is a promising drug for rescuing fibroblast metabolism and repressing cardiac fibrosis.


Assuntos
Fibroblastos , Canal de Ânion 1 Dependente de Voltagem , Animais , Camundongos , Ácidos Graxos/metabolismo , Fibroblastos/metabolismo , Fibrose , Peptídeos/metabolismo , Canal de Ânion 1 Dependente de Voltagem/genética , Canal de Ânion 1 Dependente de Voltagem/metabolismo
11.
Int J Mol Med ; 52(5)2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37800609

RESUMO

Tanshinone IIA (TSN) extracted from danshen (Salvia miltiorrhiza) could protect cardiomyocytes against myocardial ischemia/reperfusion injury (IRI), however the underlying molecular mechanisms of action remain unclear. The aim of the present study was to identify the protective effects of TSN and its mechanisms of action through in vitro studies. An anoxia/reoxygenation (A/R) injury model was established using H9c2 cells to simulate myocardial IRI in vitro. Before A/R, H9c2 cardiomyoblasts were pretreated with 8 µM TSN or 10 µM ferrostatin­1 (Fer­1) or erastin. The cell counting kit 8 (CCK­8) and lactate dehydrogenase (LDH) assay kit were used to detect the cell viability and cytotoxicity. The levels of total iron, glutathione (GSH), glutathione disulfide (GSSG), malondialdehyde (MDA), ferrous iron, caspase­3 activity, and reactive oxygen species (ROS) were assessed using commercial kit. The levels of mitochondrial membrane potential (MMP), lipid ROS, cell apoptosis, and mitochondrial permeability transition pore (mPTP) opening were detected by flow cytometry. Transmission electron microscopy (TEM) was used to observed the mitochondrial damage. Protein levels were detected by western blot analysis. The interaction between TSN and voltage­dependent anion channel 1 (VDAC1) was evaluated by molecular docking simulation. The results showed that pretreatment with TSN and Fer­1 significantly decreased cell viability, glutathione peroxidase 4 (GPX4) protein and GSH expression and GSH/GSSG ratio and inhibited upregulation of LDH activity, prostaglandin endoperoxide synthase 2 and VDAC1 protein expression, ROS levels, mitochondrial injury and GSSG induced by A/R. TSN also effectively inhibited the damaging effects of erastin treatment. Additionally, TSN increased MMP and Bcl­2/Bax ratio, while decreasing levels of apoptotic cells, activating Caspase­3 and closing the mPTP. These effects were blocked by VDAC1 overexpression and the results of molecular docking simulation studies revealed a direct interaction between TSN and VDAC1. In conclusion, TSN pretreatment effectively attenuated H9c2 cardiomyocyte damage in an A/R injury model and VDAC1­mediated ferroptosis and apoptosis served a vital role in the protective effects of TSN.


Assuntos
Ferroptose , Traumatismo por Reperfusão Miocárdica , Humanos , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Caspase 3/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Dissulfeto de Glutationa/metabolismo , Simulação de Acoplamento Molecular , Miócitos Cardíacos/metabolismo , Apoptose , Ferro/metabolismo
12.
Neoplasia ; 44: 100935, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37717471

RESUMO

Voltage-dependent anion-selective channel protein 1 (VDAC1) is the most abundant protein in the mitochondrial outer membrane and plays a crucial role in the control of hepatocellular carcinoma (HCC) progress. Our previous research found that cytosolic molecular chaperone heat shock protein 90 (Hsp90) interacted with VDAC1, but the effect of the C-terminal and N-terminal domains of Hsp90 on the formation of VDAC1 oligomers is unclear. In this study, we focused on the effect of the C-terminal domain of Hsp90 on VDAC1 oligomerization, ubiquitination, and VDAC1 channel activity. We found that Hsp90 C-terminal domain inhibitor Novobiocin promoted VDAC1 oligomerization, release of cytochrome c, and activated mitochondrial apoptosis pathway. Atomic coarse particle modeling simulation revealed C-terminal domain of Hsp90α stabilized VDAC1 monomers. The purified VDAC1 was reconstituted into a planar lipid bilayer, and electrophysiology experiments of patch clamp showed that the Hsp90 C-terminal inhibitor Novobiocin increased VDAC1 channel conductance via promoting VDAC1 oligomerization. The mitochondrial ubiquitination proteomics results showed that VDAC1 K274 mono-ubiquitination was significantly decreased upon Novobiocin treatment. Site-directed mutation of VDAC1 (K274R) weakened Hsp90α-VDAC1 interaction and increased VDAC1 oligomerization. Taken together, our results reveal that Hsp90 C-terminal domain inhibition promotes VDAC1 oligomerization and VDAC1 channel conductance by decreasing VDAC1 K274 mono- ubiquitination, which provides a new perspective for mitochondria-targeted therapy of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Apoptose , Novobiocina/farmacologia , Neoplasias Hepáticas/genética , Ubiquitinação , Canal de Ânion 1 Dependente de Voltagem/genética , Canal de Ânion 1 Dependente de Voltagem/metabolismo
13.
Mol Neurobiol ; 60(11): 6542-6555, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37458989

RESUMO

Silica nanoparticles (SiNPs) have been widely used in industry, electronics, and pharmaceutical industries. In addition, it is also widely used in medicine, tumor treatment and diagnosis, as well as other biomedical and biotechnology fields. The opportunities for people to contact SiNPs through iatrogenic, occupational, and environmental exposures are gradually increasing. The damage and biological effects of SiNPs on the nervous system have attracted widespread attention in the field of toxicology. Central nerve cells are rich in mitochondria. It is suggested that the effects of SiNPs on mitochondrial damage of nerve cells may involve the maintenance of neuronal membrane potential, the synthesis and operation of neurotransmitters, and the transmission of nerve pulses, and so on. We established an experimental model of SH-SY5Y cells to detect the cell survival rate, apoptosis, changes of reactive oxygen species and mitochondrial membrane potential, and the expression of mitochondrial function-related enzymes and proteins, so as to reveal the possible mechanism of SiNPs on neuronal mitochondrial damage. It was found that SiNPs could cause oxidative damage to cells and mitochondria, destroy some normal functions of mitochondria, and induce apoptosis in SH-SY5Y cells. The voltage-dependent anion channel 1(VDAC1) protein inhibitor DIDS could effectively reduce intracellular oxidative stress, such as the reduction of ROS content, and could also usefully restore some functional proteins of mitochondria to normal levels. The inhibition of VDAC1 protein may play an important role in the oxidative damage and dysfunction of neuronal mitochondria induced by SiNPs.


Assuntos
Nanopartículas , Neuroblastoma , Humanos , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Linhagem Celular Tumoral , Dióxido de Silício/toxicidade , Dióxido de Silício/metabolismo , Neuroblastoma/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Mitocôndrias/metabolismo , Apoptose , Nanopartículas/toxicidade , Potencial da Membrana Mitocondrial
14.
Mol Med ; 29(1): 72, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37280526

RESUMO

BACKGROUND: Mitochondrial metabolism has been proposed as an attractive target for breast cancer therapy. The discovery of new mechanisms underlying mitochondrial dysfunction will facilitate the development of new metabolic inhibitors to improve the clinical treatment of breast cancer patients. DYNLT1 (Dynein Light Chain Tctex-Type 1) is a key component of the motor complex that transports cellular cargo along microtubules in the cell, but whether and how DYNLT1 affects mitochondrial metabolism and breast cancer has not been reported. METHODS: The expression levels of DYNLT1 were analyzed in clinical samples and a panel of cell lines. The role of DYNLT1 in breast cancer development was investigated using in vivo mouse models and in vitro cell assays, including CCK-8, plate cloning and transwell assay. The role of DYNLT1 in regulating mitochondrial metabolism in breast cancer development is examined by measuring mitochondrial membrane potential and ATP levels. To investigate the underlying molecular mechanism, many methods, including but not limited to Co-IP and ubiquitination assay were used. RESULTS: First, we found that DYNLT1 was upregulated in breast tumors, especially in ER + and TNBC subtypes. DYNLT1 promotes the proliferation, migration, invasion and mitochondrial metabolism in breast cancer cells in vitro and breast tumor development in vivo. DYNLT1 colocalizes with voltage-dependent anion channel 1 (VDAC1) on mitochondria to regulate key metabolic and energy functions. Mechanistically, DYNLT1 stabilizes the voltage-dependent anion channel 1 (VDAC1) by hindering E3 ligase Parkin-mediated VDAC1 ubiquitination and degradation. CONCLUSION: Our data demonstrate that DYNLT1 promotes mitochondrial metabolism to fuel breast cancer development by inhibiting Parkin-mediated ubiquitination degradation of VDAC1. This study suggests that mitochondrial metabolism can be exploited by targeting the DYNLT1-Parkin-VDAC1 axis to improve the ability of metabolic inhibitors to suppress cancers with limited treatment options, such as triple-negative breast cancer (TNBC).


Assuntos
Neoplasias de Mama Triplo Negativas , Canal de Ânion 1 Dependente de Voltagem , Animais , Humanos , Camundongos , Apoptose , Dineínas/metabolismo , Mitocôndrias/metabolismo , Ubiquitina-Proteína Ligases , Ubiquitinação , Canal de Ânion 1 Dependente de Voltagem/genética , Canal de Ânion 1 Dependente de Voltagem/metabolismo
15.
Exp Cell Res ; 429(2): 113671, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37276998

RESUMO

Primary cilia (PCs) that are present in most human cells and perform sensory function or signal transduction are lost in many solid tumors. Previously, we identified VDAC1, best known to regulate mitochondrial bioenergetics, to negatively regulate ciliogenesis. Here, we show that downregulation of VDAC1 in pancreatic cancer-derived Panc1 and glioblastoma-derived U-87MG cells significantly increased ciliation. Those PCs were significantly longer than the control cells. Such increased ciliation possibly inhibited cell cycle, which contributed to reduced proliferation of these cells. VDAC1-depletion also led to longer PCs in quiescent RPE1 cells. Therefore, serum-induced PC disassembly was slower in VDAC1-depleted RPE1 cells. Overall, this study reiterates the importance of VDAC1 in modulating tumorigenesis, due to its novel role in regulating PC disassembly and cilia length.


Assuntos
Cílios , Glioblastoma , Humanos , Cílios/metabolismo , Transdução de Sinais , Mitocôndrias/metabolismo , Divisão Celular , Glioblastoma/genética , Glioblastoma/metabolismo , Canal de Ânion 1 Dependente de Voltagem/genética , Canal de Ânion 1 Dependente de Voltagem/metabolismo
16.
EMBO Rep ; 24(8): e56297, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37306041

RESUMO

Precise regulation of mitochondrial fusion and fission is essential for cellular activity and animal development. Imbalances between these processes can lead to fragmentation and loss of normal membrane potential in individual mitochondria. In this study, we show that MIRO-1 is stochastically elevated in individual fragmented mitochondria and is required for maintaining mitochondrial membrane potential. We further observe a higher level of membrane potential in fragmented mitochondria in fzo-1 mutants and wounded animals. Moreover, MIRO-1 interacts with VDAC-1, a crucial mitochondrial ion channel located in the outer mitochondrial membrane, and this interaction depends on the residues E473 of MIRO-1 and K163 of VDAC-1. The E473G point mutation disrupts their interaction, resulting in a reduction of the mitochondrial membrane potential. Our findings suggest that MIRO-1 regulates membrane potential and maintains mitochondrial activity and animal health by interacting with VDAC-1. This study provides insight into the mechanisms underlying the stochastic maintenance of membrane potential in fragmented mitochondria.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Potencial da Membrana Mitocondrial , Mitocôndrias/genética , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Canal de Ânion 1 Dependente de Voltagem/genética , Canal de Ânion 1 Dependente de Voltagem/metabolismo
17.
Proc Natl Acad Sci U S A ; 120(20): e2219644120, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37155882

RESUMO

Emerging evidence suggest that transcription factors play multiple roles in the development of pancreatitis, a necroinflammatory condition lacking specific therapy. Estrogen-related receptor γ (ERRγ), a pleiotropic transcription factor, has been reported to play a vital role in pancreatic acinar cell (PAC) homeostasis. However, the role of ERRγ in PAC dysfunction remains hitherto unknown. Here, we demonstrated in both mice models and human cohorts that pancreatitis is associated with an increase in ERRγ gene expression via activation of STAT3. Acinar-specific ERRγ haploinsufficiency or pharmacological inhibition of ERRγ significantly impaired the progression of pancreatitis both in vitro and in vivo. Using systematic transcriptomic analysis, we identified that voltage-dependent anion channel 1 (VDAC1) acts as a molecular mediator of ERRγ. Mechanistically, we showed that induction of ERRγ in cultured acinar cells and mouse pancreata enhanced VDAC1 expression by directly binding to specific site of the Vdac1 gene promoter and resulted in VDAC1 oligomerization. Notably, VDAC1, whose expression and oligomerization were dependent on ERRγ, modulates mitochondrial Ca2+ and ROS levels. Inhibition of the ERRγ-VDAC1 axis could alleviate mitochondrial Ca2+ accumulation, ROS formation and inhibit progression of pancreatitis. Using two different mouse models of pancreatitis, we showed that pharmacological blockade of ERRγ-VDAC1 pathway has therapeutic benefits in mitigating progression of pancreatitis. Likewise, using PRSS1R122H-Tg mice to mimic human hereditary pancreatitis, we demonstrated that ERRγ inhibitor also alleviated pancreatitis. Our findings highlight the importance of ERRγ in pancreatitis progression and suggests its therapeutic intervention for prevention and treatment of pancreatitis.


Assuntos
Pancreatite Crônica , Canal de Ânion 1 Dependente de Voltagem , Animais , Humanos , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Regulação para Cima , Canal de Ânion 1 Dependente de Voltagem/metabolismo
18.
Biomolecules ; 13(3)2023 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-36979492

RESUMO

The activation of G Protein-Coupled Receptor 56 (GPR56), also referred to as Adhesion G-Protein-Coupled Ceceptor G1 (ADGRG1), by Collagen Type III (Coll III) prompts cell growth, proliferation, and survival, among other attributes. We investigated the signaling cascades mediating this functional effect in relation to the mitochondrial outer membrane voltage-dependent anion Channel-1 (VDAC1) expression in pancreatic ß-cells. GPR56KD attenuated the Coll III-induced suppression of P70S6K, JNK, AKT, NFκB, STAT3, and STAT5 phosphorylation/activity in INS-1 cells cultured at 20 mM glucose (glucotoxicity) for 72 h. GPR56-KD also increased Chrebp, Txnip, and Vdac1 while decreasing Vdac2 mRNA expression. In GPR56-KD islet ß-cells, Vdac1 was co-localized with SNAP-25, demonstrating its plasma membrane translocation. This resulted in ATP loss, reduced cAMP production and impaired glucose-stimulated insulin secretion (GSIS) in INS-1 and human EndoC ßH1 cells. The latter defects were reversed by an acute inhibition of VDAC1 with an antibody or the VDAC1 inhibitor VBIT-4. We demonstrate that Coll III potentiates GSIS by increasing cAMP and preserving ß-cell functionality under glucotoxic conditions in a GPR56-dependent manner by attenuating the inflammatory response. These results emphasize GPR56 and VDAC1 as drug targets in conditions with impaired ß-cell function.


Assuntos
Ilhotas Pancreáticas , Receptores Acoplados a Proteínas G , Canal de Ânion 1 Dependente de Voltagem , Humanos , Trifosfato de Adenosina/metabolismo , Membrana Celular/metabolismo , Colágeno Tipo III/metabolismo , Glucose/farmacologia , Glucose/metabolismo , Ilhotas Pancreáticas/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Canal de Ânion 1 Dependente de Voltagem/genética , Canal de Ânion 1 Dependente de Voltagem/metabolismo
19.
Genomics ; 115(3): 110595, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36871636

RESUMO

The role of VDAC1 in osteosarcoma is unclear. We explored the effect of VDAC1 on osteosarcoma development by combining bioinformatic analysis and experimental identification. This study suggested that VDAC1 is an independent prognostic factor for osteosarcoma. Patients with high VDAC1 expression have a poor survival rate. VDAC1 was overexpressed in osteosarcoma cells. After silencing VDAC1, the proliferation of osteosarcoma cells decreased, and the apoptosis rate increased. Gene set variation analysis and gene set enrichment analysis indicated that VDAC1 was associated with the MAPK signaling pathway. After VDAC1 siRNA, SB203580 (a p38 inhibitor), SP600125 (a JNK inhibitor) and α-pifithrin (a p53 inhibitor) treatment, the proliferative capacity was weaker in the si-VDAC1 group than in the si-VDAC1 + SB203580, si-VDAC1 + SP600125, and si-VDAC1 + α-pifithrin groups. In conclusion, prognosis-related VDAC1 can affect osteosarcoma cells' proliferative activity and apoptosis level. The MAPK signaling pathway mediates VDAC1 regulation of osteosarcoma cell development.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Linhagem Celular Tumoral , Transdução de Sinais , Osteossarcoma/genética , Apoptose/genética , Neoplasias Ósseas/genética , Proliferação de Células/genética , Prognóstico , Canal de Ânion 1 Dependente de Voltagem/metabolismo
20.
Aging (Albany NY) ; 15(3): 705-717, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36750173

RESUMO

Breast cancer is an important cause of crisis for women's life and health. Voltage-dependent anion channel 1 (VDAC1) is mainly localized in the outer mitochondrial membrane of all eukaryotes, and it plays a crucial role in the cell as the main interface between mitochondria and cellular metabolism. Through bioinformatics, we found that VDAC1 is abnormally highly expressed in breast cancer, and the prognosis of breast cancer patients with high VDAC1 expression is poor. Through in vivo and in vitro experiments, we found that VDAC1 can promote the proliferation, migration and invasion of breast cancer cells. Further research we found that VDAC1 can activate the wnt signaling pathway. Through analysis, we found that miR-874-3p can regulate the expression of VDAC1, and the expression of miR-874-3p is decreased in breast cancer, resulting in the increase of VDAC1 expression. Our findings will provide new targets and ideas for the prevention and treatment of breast cancer.


Assuntos
Neoplasias da Mama , MicroRNAs , Humanos , Feminino , MicroRNAs/genética , MicroRNAs/metabolismo , Canal de Ânion 1 Dependente de Voltagem/genética , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Mitocôndrias/metabolismo , Proliferação de Células/genética , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...